2,546 research outputs found

    Two component theory and electron magnetic moment

    Get PDF
    The two-component formulation of quantum electrodynamics is studied. The relation with the usual Dirac formulation is exhibited, and the Feynman rules for the two-component form of the theory are presented in terms of familiar objects. The transformation from the Dirac theory to the two-component theory is quite amusing, involving Faddeev-Popov ghost loops of a fermion type with bose statistics. The introduction of an anomalous magnetic moment in the two-component formalism is simple; it is not equivalent to a Pauli term in the Dirac formulation. Such an anomalous magnetic moment appears not to destroy the renormalizability of the theory but violates unitarity.Comment: 17 pages, tex, gz-compressed tar fil

    Perturbation Theory and Relative Space

    Full text link
    The validity of non-perturbative methods is questioned. The concept of relative space is introduced.Comment: 12 pages, report UM-TH-94-1

    Muon anomalous magnetic moment due to the brane-stretching effect

    Full text link
    We investigate the contribution of extra dimensions to the muon anomalous magnetic moment by using an ADD-type 6-dimensional model. This approach analyzes the extent of the influence of classical brane fluctuations on the magnetic moment. When we consider that the brane fluctuations are static in time, they add new potential terms to the Schr{\"o}dinger equation through the induced vierbein. This paper shows that the brane fluctuation is responsible for the brane-stretching effect. This effect would be capable of reproducing the appropriate order for recent Brookhaven National Laboratory measurements of the muon (g-2) deviation.Comment: 17 pages, 1 figure, minor changed, accepted for Phys. Rev.

    Modelling postharvest quality behaviour as affected by preharvest conditions

    Get PDF
    Some hundred years ago, wise men decided that preharvest research and applications had to be regarded separated from the postharvest handling and behaviour. Over the years, both areas developed completely separated. Control over both areas was obtained by different companies and advisory boards, with mostly not too good means of communication between them. This decision hampered seriously the consistent and integral development of knowledge on food production and usage. Bridging the gap between all the knowledge and expertise available in the preharvest area of growing food and the postharvest area of storing and processing food, has become and is still becoming more and more important over the last couple of years. In this paper, based on theoretical considerations, on plausible (but unproven) mechanisms and applying the fundamental rules of chemical kinetics, a pathway to deduce general and generic models is developed towards a possible approach to integrate all available knowledge. Still the validity of this approach is not proven. However, a number of examples from both the applied as well as the fundamental point of view are elaborated to indicate such an interaction exists, and to indicate how to tackle the modelling problem. The examples range from physiological disorders like core brown, internal brown, chilling injury and the biological age of individual tomatoes in truss tomatoes as related to the maturity at harves

    Supersymmetry in the Standard Model

    Get PDF
    We prove that the bosons and massless fermions of one generation of the standard model are supersymmetric partners of each other. Except for one additional auxilliary vector boson, there are no other SUSY particles.Comment: RevTex, 6 pages, uuencoded tar compressed fil

    New Renormalization Group Equations and the Naturalness Problem

    Full text link
    Looking for an observable manifestation of the so-called unnaturalness of scalar fields we introduce a seemingly new set of differential equations for connected Green functions. These equations describe the momentum dependence of the Green functions and are close relatives to the previously known renormalization group equations. Applying the new equations to the theory of scalar field with ϕ4\phi^4 interaction we identify a relation between the four-point Green function and the propagator which expresses the unnaturalness of the scalar field. Possible manifestations of the unnaturalness at low momenta are briefly discussed.Comment: 12 revtex pages; a coefficient has been corrected in eq. (34), four new references added; final version to appear in Phys. Rev.

    Effective Field Theory of Gravity: Leading Quantum Gravitational Corrections to Newtons and Coulombs Law

    Full text link
    In this paper we consider general relativity and its combination with scalar quantum electrodynamics (QED) as an effective quantum field theory at energies well below the Planck scale. This enables us to compute the one-loop quantum corrections to the Newton and Coulomb potential induced by the combination of graviton and photon fluctuations. We derive the relevant Feynman rules and compute the nonanalytical contributions to the one-loop scattering matrix for charged scalars in the nonrelativistic limit. In particular, we derive the post-Newtonian corrections of order Gm/c2rGm/\text c^2 r from general relativity and the genuine quantum corrections of order G/c3r2G\hbar/\text c^3 r^2.Comment: 14 pages, 12 figure

    Extended Technicolor Models with Two ETC Groups

    Full text link
    We construct extended technicolor (ETC) models that can produce the large splitting between the masses of the tt and bb quarks without necessarily excessive contributions to the ρ\rho parameter or to neutral flavor-changing processes. These models make use of two different ETC gauge groups, such that left- and right-handed components of charge Q=2/3Q=2/3 quarks transform under the same ETC group, while left- and right-handed components of charge -1/3 quarks and charged leptons transform under different ETC groups. The models thereby suppress the masses mbm_b and mτm_\tau relative to mtm_t, and msm_s and mμm_\mu relative to mcm_c because the masses of the Q=1/3Q=-1/3 quarks and charged leptons require mixing between the two ETC groups, while the masses of the Q=2/3Q=2/3 quarks do not. A related source of the differences between these mass splittings is the effect of the two hierarchies of breaking scales of the two ETC groups. We analyze a particular model of this type in some detail. Although we find that this model tends to suppress the masses of the first two generations of down-type quarks and charged leptons too much, it gives useful insights into the properties of theories with more than one ETC group.Comment: 14 pages, 4 figure

    Implications of Dynamical Generation of Standard-Model Fermion Masses

    Full text link
    We point out that if quark and lepton masses arise dynamically, then in a wide class of theories the corresponding running masses mfj(p)m_{f_j}(p) exhibit the power-law decay mfj(p)Λj2/p2m_{f_j}(p) \propto \Lambda_j^2/p^2 for Euclidean momenta p>>Λjp >> \Lambda_j, where fjf_j is a fermion of generation jj, and Λj\Lambda_j is the maximal scale relevant for the origin of mfjm_{f_j}. We estimate resultant changes in precision electroweak quantities and compare with current data. It is found that this data allows the presence of such corrections. We also note that this power-law decay renders primitively divergent fermion mass corrections finite.Comment: 4 pages, late
    corecore